Update to `filter()` behaviour in bcdata v0.4.0
2022-10-28
Source:vignettes/local-filter.Rmd
local-filter.Rmd
This vignette describes a change in bcdata v0.4.0
related to using locally-executed functions in a filter()
query with bcdc_query_geodata()
:
When using bcdc_query_geodata()
with
filter()
, many functions are translated to a query plan
that is passed to and executed on the server - this includes the CQL
Geometry predicates such as INTERESECTS()
,
CROSSES()
, BBOX()
etc, as well as many base R
functions. However you sometimes want to include a function call in your
filter()
statement which should be evaluated locally -
i.e., it’s an R function (often an sf function) with no
equivalent function on the server. Prior to version 0.4.0,
bcdata did a reasonable (though not perfect) job of
detecting R functions inside a filter()
statement that
needed to be evaluated locally. In order to align with recommended best
practices for dbplyr backends, as of v0.4.0, function
calls that are to be evaluated locally now need to be wrapped in
local()
.
For example, say we want to create a bounding box around two points and use that box to perform a spatial filter on the remote dataset, to give us just the set of local greenspaces that exist within that bounding box.
library(sf)
library(bcdata)
two_points <- st_sfc(st_point(c(1164434, 368738)),
st_point(c(1203023, 412959)),
crs = 3005)
Previously, we could just do this, with sf::st_bbox()
embedded in the call:
bcdc_query_geodata("local-and-regional-greenspaces") %>%
filter(BBOX(st_bbox(two_points, crs = st_crs(two_points))))
## Error: Unable to process query. Did you use a function that should be evaluated locally? If so, try wrapping it in 'local()'.
However you must now use local()
to force local
evaluation of st_bbox()
on your machine in R, before it is
translated into a query plan to be executed on the server:
bcdc_query_geodata("local-and-regional-greenspaces") %>%
filter(BBOX(local(st_bbox(two_points, crs = st_crs(two_points)))))
## Querying 'local-and-regional-greenspaces' record
## • Using collect() on this object will return 1154 features and 19 fields
## • At most six rows of the record are printed here
## ────────────────────────────────────────────────────────────────────────────────────────────────────
## Simple feature collection with 6 features and 19 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 1200113 ymin: 385903.5 xmax: 1202608 ymax: 386561.8
## Projected CRS: NAD83 / BC Albers
## # A tibble: 6 × 20
## id LOCAL…¹ PARK_…² PARK_…³ PARK_…⁴ REGIO…⁵ MUNIC…⁶ CIVIC…⁷ CIVIC…⁸ STREE…⁹ LATIT…˟ LONGI…˟
## <chr> <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 WHSE_BASE… 3347 Konuks… Local Green … Capital Distri… <NA> <NA> <NA> 48.5 -123.
## 2 WHSE_BASE… 3304 <NA> Local Trail Capital Distri… <NA> <NA> <NA> 48.5 -123.
## 3 WHSE_BASE… 3380 <NA> Local Water … Capital Distri… <NA> <NA> <NA> 48.5 -123.
## 4 WHSE_BASE… 3369 <NA> Local Water … Capital Distri… <NA> <NA> <NA> 48.5 -123.
## 5 WHSE_BASE… 3453 <NA> Local Water … Capital Distri… <NA> <NA> <NA> 48.5 -123.
## 6 WHSE_BASE… 3361 <NA> Local Trail Capital Distri… <NA> <NA> <NA> 48.5 -123.
## # … with 8 more variables: WHEN_UPDATED <date>, WEBSITE_URL <chr>, LICENCE_COMMENTS <chr>,
## # FEATURE_AREA_SQM <dbl>, FEATURE_LENGTH_M <dbl>, OBJECTID <int>, SE_ANNO_CAD_DATA <chr>,
## # geometry <POLYGON [m]>, and abbreviated variable names ¹LOCAL_REG_GREENSPACE_ID, ²PARK_NAME,
## # ³PARK_TYPE, ⁴PARK_PRIMARY_USE, ⁵REGIONAL_DISTRICT, ⁶MUNICIPALITY, ⁷CIVIC_NUMBER,
## # ⁸CIVIC_NUMBER_SUFFIX, ⁹STREET_NAME, ˟LATITUDE, ˟LONGITUDE
There is another illustration in the “querying spatial data vignette”.