Returns a tbl data frame with the following columns
- dist
The distribution name (chr)
- aic
Akaike's Information Criterion (dbl)
- bic
Bayesian Information Criterion (dbl)
and if the data are non-censored
- aicc
Akaike's Information Criterion corrected for sample size (dbl)
and if there are 8 or more samples
- ad
Anderson-Darling statistic (dbl)
- ks
Kolmogorov-Smirnov statistic (dbl)
- cvm
Cramer-von Mises statistic (dbl)
In the case of an object of class fitdists the function also returns
- delta
The Information Criterion differences (dbl)
- weight
The Information Criterion weights (dbl)
where delta
and weight
are based on aic
for censored data
and aicc
for non-censored data.
Examples
fits <- ssd_fit_dists(ssddata::ccme_boron)
ssd_gof(fits)
#> # A tibble: 6 × 9
#> dist ad ks cvm aic aicc bic delta weight
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 gamma 0.440 0.117 0.0554 238. 238. 240. 0.005 0.357
#> 2 lgumbel 0.829 0.158 0.134 244. 245. 247. 6.56 0.013
#> 3 llogis 0.487 0.0994 0.0595 241. 241. 244. 3.39 0.066
#> 4 lnorm 0.507 0.107 0.0703 239. 240. 242. 1.40 0.177
#> 5 lnorm_lnorm 0.320 0.116 0.0414 240. 243. 247. 4.98 0.03
#> 6 weibull 0.434 0.117 0.0542 238. 238. 240. 0 0.357
ssd_gof(fits, pvalue = TRUE)
#> # A tibble: 6 × 9
#> dist ad ks cvm aic aicc bic delta weight
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 gamma 0.807 0.839 0.847 238. 238. 240. 0.005 0.357
#> 2 lgumbel 0.460 0.485 0.445 244. 245. 247. 6.56 0.013
#> 3 llogis 0.759 0.945 0.821 241. 241. 244. 3.39 0.066
#> 4 lnorm 0.738 0.908 0.754 239. 240. 242. 1.40 0.177
#> 5 lnorm_lnorm 0.922 0.846 0.929 240. 243. 247. 4.98 0.03
#> 6 weibull 0.813 0.839 0.854 238. 238. 240. 0 0.357