Recode a vector of erroneous values for a vector or column(s) in a dataframe by replacing those values with NA or another common indicator value. Similar to na_if but is more flexible, e.g. it can operate on multiple columns/rows (for data frames), or value indices (for vectors).

recode_errors(
  data,
  errors,
  replacement = NA,
  rows = NULL,
  cols = NULL,
  ind = NULL
)

Arguments

data

A vector, data frame, tibble, or matrix.

errors

A vector of erroneous values to be recoded.

replacement

The value you wish to replace all errors with. Default = NA.

rows

A vector specifying the rows of the data object for which to replace erroneous values. Default is all rows in data. Use "ind" instead if data is a vector.

cols

A vector specifying the columns of the data object for which to replace erroneous values. Default is all columns in data. Use "ind" instead if data is a vector.

ind

If data is a vector, this accepts a vector specifying the indices the data object for which to replace erroneous values. Default is all indices in data. Use "rows" &/or "cols" to specify indices to operate upon if data is not a vector.

Author

Craig P. Hutton, Craig.Hutton@gov.bc.ca

Examples


#if (hypothetically) values of 0 & 8 were actually data entry errors in the
#mtcars dataset these can easily be recoded as NAs

data(mtcars)

recode_errors(mtcars,
  cols = c(8:11), #specify a column number range
  errors = c(0, 8))
#>     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> 1  21.0   6 160.0 110 3.90 2.620 16.46 NA  1    4    4
#> 2  21.0   6 160.0 110 3.90 2.875 17.02 NA  1    4    4
#> 3  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> 4  21.4   6 258.0 110 3.08 3.215 19.44  1 NA    3    1
#> 5  18.7   8 360.0 175 3.15 3.440 17.02 NA NA    3    2
#> 6  18.1   6 225.0 105 2.76 3.460 20.22  1 NA    3    1
#> 7  14.3   8 360.0 245 3.21 3.570 15.84 NA NA    3    4
#> 8  24.4   4 146.7  62 3.69 3.190 20.00  1 NA    4    2
#> 9  22.8   4 140.8  95 3.92 3.150 22.90  1 NA    4    2
#> 10 19.2   6 167.6 123 3.92 3.440 18.30  1 NA    4    4
#> 11 17.8   6 167.6 123 3.92 3.440 18.90  1 NA    4    4
#> 12 16.4   8 275.8 180 3.07 4.070 17.40 NA NA    3    3
#> 13 17.3   8 275.8 180 3.07 3.730 17.60 NA NA    3    3
#> 14 15.2   8 275.8 180 3.07 3.780 18.00 NA NA    3    3
#> 15 10.4   8 472.0 205 2.93 5.250 17.98 NA NA    3    4
#> 16 10.4   8 460.0 215 3.00 5.424 17.82 NA NA    3    4
#> 17 14.7   8 440.0 230 3.23 5.345 17.42 NA NA    3    4
#> 18 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> 19 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> 20 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> 21 21.5   4 120.1  97 3.70 2.465 20.01  1 NA    3    1
#> 22 15.5   8 318.0 150 2.76 3.520 16.87 NA NA    3    2
#> 23 15.2   8 304.0 150 3.15 3.435 17.30 NA NA    3    2
#> 24 13.3   8 350.0 245 3.73 3.840 15.41 NA NA    3    4
#> 25 19.2   8 400.0 175 3.08 3.845 17.05 NA NA    3    2
#> 26 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> 27 26.0   4 120.3  91 4.43 2.140 16.70 NA  1    5    2
#> 28 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> 29 15.8   8 351.0 264 4.22 3.170 14.50 NA  1    5    4
#> 30 19.7   6 145.0 175 3.62 2.770 15.50 NA  1    5    6
#> 31 15.0   8 301.0 335 3.54 3.570 14.60 NA  1    5   NA
#> 32 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2